
dataspec

May 11, 2020

Contents:

1 Getting Started 3
1.1 What are Specs? . 3
1.2 Features . 3
1.3 Installation . 4
1.4 First Steps . 4
1.5 Why not X? . 6

2 Usage 7
2.1 Constructing Specs . 8
2.2 Validation . 8
2.3 Conformation . 9
2.4 Predicate and Validators . 9
2.5 Type Specs . 10
2.6 Factories . 10
2.7 Enumeration (Set) Specs . 12
2.8 Collection Specs . 12
2.9 Mapping Specs . 13
2.10 Tuple Specs . 14
2.11 Combination Specs . 14
2.12 Utility Specs . 15

3 Concepts and Patterns 17
3.1 Concepts . 17
3.2 Patterns . 18

4 Dataspec API 21
4.1 Creating Specs . 21
4.2 Types . 36
4.3 Spec Errors . 38
4.4 Utilities . 39

5 Indices and tables 41

Python Module Index 43

Index 45

i

ii

dataspec

Dataspec is a data specification and normalization toolkit written in pure Python. With Dataspec, you can create Specs
to validate and normalize data of almost any shape. Dataspec is inspired by Clojure’s spec library.

Contents: 1

https://clojure.org/guides/spec

dataspec

2 Contents:

CHAPTER 1

Getting Started

Contents

• Getting Started

– What are Specs?

– Features

– Installation

– First Steps

– Why not X?

1.1 What are Specs?

Specs are declarative data specifications written in pure Python code. Specs can be created using the generic Spec
constructor function dataspec.s(). Specs provide two useful and related functions. The first is to evaluate whether
an arbitrary data structure satisfies the specification. The second function is to conform (or normalize) valid data
structures into a canonical format.

The simplest Specs are based on common predicate functions, such as lambda x: isinstance(x, str)
which asks “Is the object x an instance of str?”. Fortunately, Specs are not limited to being created from single
predicates. Specs can also be created from groups of predicates, composed in a variety of useful ways, and even
defined for complex data structures. Because Specs are ultimately backed by pure Python code, any question that you
can answer about your data in code can be encoded in a Spec.

1.2 Features

• Simple API using primarily native Python types and data structures

3

dataspec

• Stateless, immutable Spec objects are designed to be created once, reused, and composed

• Rich error objects point to the exact location of the error in the input value

• Builtin factories for many common validations

1.3 Installation

Dataspec is developed on GitHub and hosted on PyPI. You can fetch Dataspec using pip:

pip install dataspec

To enable support for phone number specs or arbitrary date strings, you can choose the extras when you install:

pip install dataspec[dates]
pip install dataspec[phonenumbers]

1.4 First Steps

To begin using the dataspec library, you can simply import the s object:

from dataspec import s

s is a generic constructor for creating new Specs. Many useful Specs can be composed from basic Python objects like
types, functions, and data structures. The “Hello, world!” equivalent for creating new Specs might be a simple Spec
that validates that an input is a string (a Python str). We can do this by simply passing the Python str type directly
to s. When s receives an instance of a type object, it assumes you want to create a Spec that validates input values
are of that type:

spec = s(str)
spec.is_valid("a string") # True
spec.is_valid(3) # False

Often you want to assert more than one condition on an input value. After all, it’s fairly trivial to assert type checks
on a value. In fact, this may even be done by a deserialization library on your behalf. Perhaps you’re interested in
checking that your input is a string and that it contains only numbers and hyphens. dataspec lets you define Specs
with boolean logic, which can be useful for asserting multiple conditions on your input:

spec = s.all(str, lambda s: all(c.isdecimal() or c == "-" for c in s))
spec.is_valid("212-867-5309") # True
spec.is_valid("Philip Jennings") # False

Composition is at the heart of dataspec ‘s design. In the previous example, we learned a few useful things. First, s
is actually a callable object with static methods which help produce other sorts of Specs. Second, we can see that when
we pass objects understood to s into various Spec constructors, they are automatically coerced into the appropriate
Spec type. Here, we passed a type, which we used previously. We also passed in a function of one argument returning
a boolean; in dataspec, these are called predicates and they are turned into Specs which validate input values if the
function returns True and fail otherwise. Finally, we learned that s.all can be used to produce and -type boolean
logic between different Specs. (You can produce or Specs using s.any).

In the previous example, we used the and logic to check for our conditions to show various different features of
dataspec. However, in real code you’d likely take advantage of dataspec ‘s builtin s.str factory, which can
assert several useful properties of strings (in addition to the basic isinstance check). In the case above, perhaps

4 Chapter 1. Getting Started

https://github.com/coverahealth/dataspec
https://pypi.org/project/dataspec/

dataspec

we really wanted to check for a US ZIP code (with the trailing 4 digits). We can perform that check using a simple
regex string validator:

spec = s.str("us_zip_plus_4", regex=r"\d{5}\-\d{4}")
spec.is_valid("10001-3093") # True
spec.is_valid("10001") # False
spec.is_valid("N0L 1E0") # False

Scalar Specs like the one above trivially different from the same checks you could write in raw Python. The real power
of dataspec comes from its ability to compose Specs for larger, nested data structures. Suppose you were accepting
a physician profile object via a JSON API and you wanted to validate that the physician licenses were valid in all of
the states you operate in:

operating_states = s("operating_states", {"CA", "GA", "NY"})
license_states = s("license_states", [operating_states, {"kind": list}])
license_states.is_valid(["CA", "NY"]) # True
license_states.is_valid(["SD", "GA"]) # False, you do not operate in South Dakota
license_states.is_valid({"CA"}) # False, as the input collection is a set

In the previous example, we learned a bit more about dataspec. First, we can see that Spec objects are designed
to be reused. We declared operating_states as a separate Spec from license_states with the intent that
we could use it as a component of other Specs. Specs are immutable and stateless, so they can be reused in other
Specs without issue. Next, we can see that we’re expecting a collection, indicated by the Python list wrapping
operating_states in the license_states Spec. In particular, we are expecting exactly a list, not a
set or tuple. Third, we are expecting a limited set of enumerated values, indicated by operating_states
being a set. Values not in the set are rejected. dataspec also supports using Python’s Enum objects for defining
enumerated types.

We did declare two separate Specs and pass both to s directly. However, we could have declared the entire Spec inline
and swould have converted each child value into a Spec automatically: s([{"CA", "GA", "NY"}, {"kind":
list}]).

Building on the previous example, let’s suppose we want to validate a simplified version of that physician profile
object. Spec is great for validating data at your application boundaries. You can pass it your deserialized input values
and it will help you ensure that you’re receiving data in the shape your internal services expect:

spec = s(
"user-profile",
{

"id": s.str("id", format_="uuid"),
"first_name": s.str("first_name"),
"last_name": s.str("last_name"),
"date_of_birth": s.str("date_of_birth", format_="iso-date"),
s.opt("gender"): s("gender", {"M", "F"}),
"license_states": license_states, # using the previously defined Spec

}
)
spec.is_valid(# True

{
"id": "e1bc9fb2-a4d3-4683-bfef-3acc61b0edcc",
"first_name": "Carl",
"last_name": "Sagan",
"date_of_birth": "1996-12-20",
"license_states": ["CA"],

}
)
spec.is_valid(# False; the optional "gender" key included an invalid value

(continues on next page)

1.4. First Steps 5

dataspec

(continued from previous page)

{
"id": "e1bc9fb2-a4d3-4683-bfef-3acc61b0edcc",
"first_name": "Carl",
"last_name": "Sagan",
"date_of_birth": "1996-12-20",
"gender": "O",
"license_states": ["CA"],

}
)
spec.is_valid(# True; note that extra keys _are ignored_

{
"id": "958e2f55-5fdf-4b84-a522-a0765299ba4b",
"first_name": "Marie",
"last_name": "Curie",
"date_of_birth": "1867-11-07",
"gender": "F",
"license_states": ["NY", "GA"],
"occupation": "Chemist",

}
)
spec.is_valid(# False; the "license_states" includes the invalid value "TX"

{
"id": "958e2f55-5fdf-4b84-a522-a0765299ba4b",
"first_name": "Marie",
"last_name": "Curie",
"date_of_birth": "1867-11-07",
"license_states": ["TX"],

}
)

1.5 Why not X?

Python’s ecosystem features a rich collection of data validation and normalization tools, so a new entrant in the space
naturally begs the question “why didn’t you just use X instead?”. Before creating Dataspec, we surveyed a wide variety
of different tools and had even used one or two in our production service. All of these tools are generally successful at
validating data, but each had some issue that caused us to pass.

• Many of the libraries in this space primarily help validate data, but do not always help you normalize or conform
that data after it has been validated. Dataspec provides validation and conformation out of the box.

• Libraries which do feature validation and normalization often complect these two steps. Dataspec validation is
a discrete step that occurs before conformation, so it is easy to reason about failures in validation.

• Some of the libraries we tried were stateful or leaned too heavily on mutability. We tend to prefer immutable
and stateless objects where mutability and state is not required. Specs in Dataspec are completely stateless and
conformation always produces a new value. This is certainly more costly than mutating inputs, but mutating
code is harder to reason about and is a major source of bugs, so we prefer to avoid it.

• Many libraries we surveyed focused on defining validations from the top-down, rather than encouraging com-
position. Specs in Dataspec are designed to be created once, reused, and composed, rather than requiring a
separate definition for each usage.

6 Chapter 1. Getting Started

CHAPTER 2

Usage

Contents

• Usage

– Constructing Specs

– Validation

– Conformation

* User Provided Conformers

– Predicate and Validators

– Type Specs

– Factories

* String Specs

* Numeric Specs

* UUID Specs

* Time and Date Specs

* Phone Number Specs

* Email Address and URL Specs

– Enumeration (Set) Specs

– Collection Specs

– Mapping Specs

* Merging Mapping Specs

* Key/Value Specs

7

dataspec

– Tuple Specs

– Combination Specs

– Utility Specs

2.1 Constructing Specs

To begin using the dataspec library, you can simply import the dataspec.s object:

from dataspec import s

s() is a generic Spec constructor, which can be called to construct new Specs from a variety of sources. It is a
singleton instance of dataspec.SpecAPI and nearly all of the factory or convenience methods below are available
as static methods on s().

Specs are designed to be composed, so each of the spec types below can serve as the base for more complex data
definitions. For collection, mapping, and tuple type Specs, Specs will be recursively created for child elements if they
are types understood by s().

Specs may also optionally be created with Tags, which are just string names provided in dataspec.
ErrorDetails objects emitted by Spec instance dataspec.Spec.validate() methods. For s(), tags may
be provided as the first positional argument. Specs are required to have tags and all builtin Spec factories will supply
a default tag if one is not given.

2.2 Validation

Once you’ve constructed your Spec, you’ll most likely want to begin validating data with that Spec. The dataspec.
Spec interface provides several different ways to check that your data is valid given your use case.

The simplest way to validate your data is by calling dataspec.Spec.is_valid() which returns a simple
boolean True if your data is valid and False otherwise. Of course, that kind of simple yes or no answer may
be sufficient in some cases, but in other cases you may be more interested in knowing exactly why the data you pro-
vided is invalid. For more complex cases, you can turn to the generator dataspec.Spec.validate() which
will emit successive dataspec.ErrorDetails instances describing the errors in your input value.

dataspec.ErrorDetails instances include comprehensive details about why your input data did not meet the
Spec, including an error message, the predicate that validated it, and the value itself. via is a list of all Spec tags
that validated your data up to (and including) the error. For nested values, the path attribute indicates the indices and
keys that lead from the input value to the failing value. This detail can be used to programmatically emit useful error
messages to clients.

Note: For convenience, you can fetch all of the errors at once as a list using dataspec.Spec.validate_all()
or raise an exception with all of the errors using dataspec.Spec.validate_ex().

Warning: dataspec will emit an exhaustive list of every instance where your input data fails to meet the Spec,
so if you do not require a full list of errors, you may want to consider using dataspec.Spec.is_valid() or
using the generator method dataspec.Spec.validate() to fetch errors as needed.

8 Chapter 2. Usage

dataspec

2.3 Conformation

Data validation is only one half of the value proposition for using dataspec. After you’ve validated that data is valid,
the next step is to normalize it into a canonical format. Conformers are functions of one argument that can accept a
validated value and emit a canonical representation of that value. Conformation is the component of dataspec that
helps you normalize data.

Every Spec value comes with a default conformer. For most Specs, that conformer simply returns the value it was
passed, though a few builtin Specs do provide a richer, canonicalized version of the input data. For example, s.
date() conforms a date (possibly from a strptime format string) into a date object. Note that none of the builtin
Spec conformers ever modify the data they are passed. dataspec conformers always create new data structures and
return the conformed values. Custom conformers can modify their data in-flight, but that is not recommended since it
will be harder reason about failures (in particular, if a mutating conformer appeared in the middle of s.all(...)
Spec and a later Spec produced an error).

Most common Spec workflows will involve validating that your data is, in fact, valid using dataspec.Spec.
is_valid() or dataspec.Spec.validate() for richer error details and then calling dataspec.Spec.
conform_valid() if it is valid or dealing with the error if not.

2.3.1 User Provided Conformers

When you create Specs, you can always provide a conformer using the conformer keyword argument. This
function will be called any time you call dataspec.Spec.conform() on your Spec or any Spec your Spec
is a part of. The conformer keyword argument for s() and other builtin factories will always apply your con-
former as by dataspec.Spec.compose_conformer() , rather than replacing the default conformer. To have
your conformer completely replace the default conformer (if one is provided), you can use the dataspec.Spec.
with_conformer() method on the returned Spec.

2.4 Predicate and Validators

You can define a spec using any simple predicate you may have by passing the predicate directly to the s() function,
since not every valid state of your data can be specified using existing specs.

spec = s(lambda id_: uuid.UUID(id_).version == 4)
spec.is_valid("4716df50-0aa0-4b7d-98a4-1f2b2bcb1c6b") # True
spec.is_valid("b4e9735a-ee8c-11e9-8708-4c327592fea9") # False

Simple predicates make fine specs, but are unable to provide more details to the caller about exactly why the input
value failed to validate. Validator specs directly yield dataspec.ErrorDetails objects which can indicate more
precisely why the input data is failing to validate.

def _is_positive_int(v: Any) -> Iterable[ErrorDetails]:
if not isinstance(v, int):

yield ErrorDetails(
message="Value must be an integer", pred=_is_positive_int, value=v

)
elif v < 1:

yield ErrorDetails(
message="Number must be greater than 0", pred=_is_positive_int, value=v

)

spec = s(_is_positive_int)
spec.is_valid(5) # True

(continues on next page)

2.3. Conformation 9

dataspec

(continued from previous page)

spec.is_valid(0.5) # False
spec.validate_ex(-1) # ValidationError(errors=[ErrorDetails(message="Number must be
→˓greater than 0", ...)])

Simple predicates can be converted into validator functions using the builtin dataspec.pred_to_validator()
decorator:

@pred_to_validator("Number must be greater than 0")
def _is_positive_num(v: Union[int, float]) -> bool:

return v > 0

spec = s(_is_positive_num)
spec.is_valid(5) # True
spec.is_valid(0.5) # True
spec.validate_ex(-1) # ValidationError(errors=[ErrorDetails(message="Number must be
→˓greater than 0", ...)])

2.5 Type Specs

You can define a Spec that validates input values are instances of specific class types by simply passing a Python type
directly to the s() constructor:

spec = s(str)
spec.is_valid("a string") # True
spec.is_valid(3) # False

Note: s(None) is a shortcut for s(type(None)).

2.6 Factories

The s API also includes several Spec factories for common Python types such as bool, bytes, date, datetime
(via s.inst()), float (via s.num()), int (via s.num()), str, time, and uuid.

s also includes several pre-built Specs for basic types which are useful if you only want to verify that a value is of a
specific type. All the pre-built Specs are supplied as s.is_{type} on s. You can generate a more generic type-checking
spec using Type Specs.

2.6.1 String Specs

You can create a spec which validates strings with s.str(). Common string validations can be specified as keyword
arguments, such as the min/max length or a matching regex. If you are only interested in validating that a value is a
string without any further validations, spec features the predefined spec s.is_str (note no function call required).

2.6.2 Numeric Specs

Likewise, numeric specs can be created using s.num(), with several builtin validations available as keyword argu-
ments such as min/max value and narrowing down the specific numeric types. If you are only interested in validating
that a value is numeric, you can use the builtin s.is_num or s.is_int or s.is_float specs.

10 Chapter 2. Usage

dataspec

2.6.3 UUID Specs

In a previous section, we used a simple predicate to check that a UUID was a certain version of an RFC 4122 variant
UUID. However, dataspec includes the builtin UUID spec factory s.uuid() which can simplify the logic here:

spec = s.uuid(versions={4})
spec.is_valid("4716df50-0aa0-4b7d-98a4-1f2b2bcb1c6b") # True
spec.is_valid("b4e9735a-ee8c-11e9-8708-4c327592fea9") # False

Additionally, if you are only interested in validating that a value is a UUID, the builting spec s.is_uuid is available.

2.6.4 Time and Date Specs

dataspec includes some builtin Specs for Python’s datetime, date, and time classes. With the builtin specs,
you can validate that any of these three class types are before or after a given. Suppose you want to verify that someone
is 18 by checking their date of birth:

spec = s.date(after=date.today() - timedelta(years=18))
spec.is_valid(date.today() - timedelta(years=21)) # True
spec.is_valid(date.today() - timedelta(years=12)) # False

For datetimes (instants) and times, you can also use is_aware=True to specify that the instance be timezone-aware
(e.g. not naive).

You can use the builtins s.is_date, s.is_inst, and s.is_time if you only want to validate that a value is an
instance of any of those classes.

Note: dataspec supports specs for arbitrary date strings if you have python-dateutil installed. See s.
inst_str() for info.

2.6.5 Phone Number Specs

dataspec supports creating Specs for validating telephone numbers from strings using s.phone() if you have the
phonenumbers library installed. Telephone number Specs can validate that a telephone number is merely formatted
correctly or they can validate that a telephone number is both possible and valid (via phonenumbers).

spec = s.phone(region="US")
spec.is_valid("(212) 867-5309") # True
spec.conform("(212) 867-5309") # "+12128675309"
spec.is_valid("(22) 867-5309") # False

2.6.6 Email Address and URL Specs

dataspec features Spec factories for validating email addresses using s.email() and URLs using s.url().

Email addresses are validated using Python’s builtin email.headerregistry.Address class to parse email
addresses into username and domain. For each of username and domain , you may validate that the value is an
exact match, is one of a set of possible matches, or that it matches a regex pattern. To produce a Spec which only
validates email addresses from gmail.com or googlemail.com:

2.6. Factories 11

https://github.com/daviddrysdale/python-phonenumbers

dataspec

spec = s.email(domain_in={"gmail.com", "googlemail.com"})
spec = s.email(domain_regex=r"(gmail|googlemail)\.com")
spec = s.email(domain="gmail.com") # Don't allow "googlemail.com" email addresses

No more than one keyword filter may be supplied for either of username or domain.

URLs are validated using Python’s builtin urllibmodule to parse URLs into their constituent components: scheme
, netloc , path , params , fragment , username , password , hostname, and port. URL Specs may
optionally provide a Spec for the dict created by parsing the query-string (if present) for the URL. Specs for each
of the components of a URL allow the same filters as described above for email addresses. For more information, see
s.url().

2.7 Enumeration (Set) Specs

Commonly, you may be interested in validating that a value is one of a constrained set of known values. In Python
code, you would use an Enum type to model these values. To define an enumermation spec, you can pass an existing
Enum value into dataspec.s() :

class YesNo(Enum):
YES = "Yes"
NO = "No"

s(YesNo).is_valid("Yes") # True
s(YesNo).is_valid("Maybe") # False

Any valid representation of the Enum value would satisfy the spec, including the value, alias, and actual Enum value
(like YesNo.NO).

Additionally, for simpler cases you can specify an enum using Python set s (or frozenset s):

s({"Yes", "No"}).is_valid("Yes") # True
s({"Yes", "No"}).is_valid("Maybe") # False

2.8 Collection Specs

Specs can be defined for values in homogenous collections as well. Define a spec for a homogenous collection as a
list passed to dataspec.s() with the first element as the Spec for collection elements:

s([s.num(min_=0)]).is_valid([1, 2, 3, 4]) # True
s([s.num(min_=0)]).is_valid([-11, 2, 3]) # False

You may also want to assert certain conditions that apply to the collection as a whole. dataspec allows you to
specify an optional dictionary as the second element of the list with a few possible rules applying to the collection as
a whole, such as length and collection type.

s([s.num(min_=0), {"kind": list}]).is_valid([1, 2, 3, 4]) # True
s([s.num(min_=0), {"kind": list}]).is_valid({1, 2, 3, 4}) # False

Collection specs conform input collections by applying the element conformer(s) to each element of the input collec-
tion. Callers can specify an "into" key in the collection options dictionary as part of the spec to specify which type
of collection is emitted by the collection spec default conformer. Collection specs which do not specify the "into"
collection type will conform collections into the same type as the input collection.

12 Chapter 2. Usage

dataspec

2.9 Mapping Specs

Specs can be defined for mapping/associative types and objects. To define a spec for a mapping type, pass a dictionary
of specs to s. The keys should be the expected key value (most often a string) and the value should be the spec for
values located in that key. If a mapping spec contains a key, the spec considers that key required. To specify an
optional key in the spec, wrap the key in s.opt(). Optional keys will be validated if they are present, but allow the
map to exclude those keys without being considered invalid.

s(
{

"id": s.str("id", format_="uuid"),
"first_name": s.str("first_name"),
"last_name": s.str("last_name"),
"date_of_birth": s.str("date_of_birth", format_="iso-date"),
"gender": s("gender", {"M", "F"}),
s.opt("state"): s("state", {"CA", "GA", "NY"}),

}
)

Above the key "state" is optional in tested values, but if it is provided it must be one of "CA", "GA", or "NY".

Note: Mapping specs do not validate that input values only contain the expected set of keys. Extra keys will be
ignored. This is intentional behavior.

Note: To apply the mapping Spec key as the tag of the value Spec, use s.dict_tag() to construct your mapping
Spec. For more precise control over the value Spec tags, prefer s().

Mapping specs conform input dictionaries by applying each field’s conformer(s) to the fields of the input map to return
a new dictionary. As a consequence, the value returned by the mapping spec default conformer will not include any
extra keys included in the input. Optional keys will be included in the conformed value if they appear in the input map.

2.9.1 Merging Mapping Specs

Occasionally, you may wish to declare your mapping Specs across two or more different Specs. It may be convenient
to do so for composition of common keys across multiple Specs. In such cases, you may naturally turn to one of the
builtin Combination Specs to return a union of the input Specs. However, combination Specs composed of mapping
Specs with disjoint or only partially intersecting key sets will end up producing unexpected results. Recall mapping
Specs have a default conformer which drops keys not declared in the input Spec, so the chained conformation of
s.all() will drop keys potentially expected by later Specs.

To merge mapping Specs, use s.merge() instead.

s.merge(
{"id": int},
{

"id": lambda v: v > 0,
"first_name": str,
s.opt("middle_initial"): str,
"last_name": str,

},
)

2.9. Mapping Specs 13

dataspec

In the above Spec, id would be a required key, which must be an integer greater than zero. Specs for the remaining
keys would match the Spec defined in the second input Spec.

Note: Only mapping Specs may be merged. s.merge will throw a ValueError if you attempt to merge non-
mapping type Specs. To combine mapping and non-mapping Spec types, you should wrap the mapping Specs with
s.merge and pass that to s.all.

2.9.2 Key/Value Specs

Mapping Specs are useful for heterogeneous associative data structures for which the keys are known a priori. How-
ever, you may often wish to validate a homogeneous mapping with unknown keys. For such cases, you can turn to
s.kv().

spec = s.kv(s.str(regex=r"[A-Z]{2}"), s.str(regex=r"[A-Z][\w]+"))
spec.is_valid({"GA": "Georgia", "NM": "New Mexico"}) # True
spec.is_valid({"ga": "Georgia", "NM": "New Mexico"}) # False
spec.is_valid({"ga": "Georgia", "NM": "new mexico"}) # False

Note: By default s.kv will not conform keys on input values, to avoid potential creating potentially duplicate keys
from the key conformer. You can override this behavior with the conform_keys keyword argument.

2.10 Tuple Specs

Specs can be defined for heterogenous collections of elements, which is often the use case for Python’s tuple type.
To define a spec for a tuple, pass a tuple of specs for each element in the collection at the corresponding tuple index:

s(
(

s.str("id", format_="uuid"),
s.str("first_name"),
s.str("last_name"),
s.str("date_of_birth", format_="iso-date"),
s("gender", {"M", "F"}),

)
)

Tuple specs conform input tuples by applying each field’s conformer(s) to the fields of the input tuple to return a new
tuple. If each field in the tuple spec has a unique tag and the tuple has a custom tag specified, the default conformer
will yield a namedtuple with the tuple spec tag as the type name and the field spec tags as each field name. The
type name and field names will be munged to be valid Python identifiers.

2.11 Combination Specs

In most of the previous examples, we used basic builtin Specs. However, real world data often more nuanced spec-
ifications for data. Fortunately, Specs were designed to be composed. In particular, Specs can be composed using
standard boolean logic. To specify an or spec, you can use s.any() with any n specs.

14 Chapter 2. Usage

dataspec

spec = s.any(s.str(format_="uuid"), s.str(maxlength=0))
spec.is_valid("4716df50-0aa0-4b7d-98a4-1f2b2bcb1c6b") # True
spec.is_valid("") # True
spec.is_valid("3837273723") # False

Similarly, to specify an and spec, you can use s.all() with any n specs:

spec = s.all(s.str(format_="uuid"), s(lambda id_: uuid.UUID(id_).version == 4))
spec.is_valid("4716df50-0aa0-4b7d-98a4-1f2b2bcb1c6b") # True
spec.is_valid("b4e9735a-ee8c-11e9-8708-4c327592fea9") # False

Note: and Specs apply each child Spec’s conformer to the value during validation, so you may assume the output of
the previous Spec’s conformer in subsequent Specs.

Note: The names any and all were chosen because or and and are not valid Python since they are reserved
keywords.

Warning: Using a s.all() Spec to combine mapping Specs for maps with disjoint or only partially intersecting
keys will result in maps losing keys during conformation and failing validation in later Specs. Use s.merge()
to combine mapping Specs. Read more in Merging Mapping Specs.

2.12 Utility Specs

Often when dealing with real world data, you may wish to allow certain values to be blank or None. We could handle
these cases with Combination Specs, but since they occur so commonly, dataspec features a couple of utility Specs
for quickly defining these cases. For cases where None is a valid value, you can wrap your Spec with s.nilable().
If you are dealing with strings and need to allow a blank value (as is often the case when handling CSVs), you can
wrap your Spec with s.blankable.

spec = s.nilable("birth_date", s.str(format_="iso-date"))
spec.is_valid(None) # True
spec.is_valid("1980-09-14") # True
spec.is_valid("") # False
spec.is_valid("09/14/1980") # False, because the string is not ISO formatted

spec = s.blankable("birth_date", s.str(format_="iso-date"))
spec.is_valid(None) # False
spec.is_valid("1980-09-14") # True
spec.is_valid("") # True
spec.is_valid("09/14/1980") # False

In certain cases, you may be willing to accept invalid data and overwrite it with a default value during conformation.
For such cases, you can specify a default value whenever the input value does not pass validation for another spec
using s.default. The value supplied to the default keyword argument will be provided by the conformer if the
inner Spec does not validate.

spec = s.default("birth_date_or_none", s.str(format=_"iso-date"), default=None)
spec.is_valid(None) # True; conforms to None

(continues on next page)

2.12. Utility Specs 15

dataspec

(continued from previous page)

spec.is_valid("1980-09-14") # True; conforms to "1980-09-14"
spec.is_valid("") # True; conforms to None
spec.is_valid("09/14/1980") # True; conforms to None

Note: As a consequence of the default value, s.default(...) Specs consider every value valid. If you do not
want to permit all values to pass, you should not use s.default.

Occasionally, it may be useful to allow any value to pass validation. For these cases s.every() is perfect.

Note: You may want to combine s.every(...) with s.all(...) to perform a pre- conformation step prior to
later steps. In this case, it may still be useful to provide a slightly more strict validation to ensure your conformer does
not throw an exception.

16 Chapter 2. Usage

CHAPTER 3

Concepts and Patterns

Contents

• Concepts and Patterns

– Concepts

* Composition

* Predicates

* Validators

* Conformers

* Tags

– Patterns

* Factories

* Reuse

3.1 Concepts

3.1.1 Composition

Specs are designed to be composed, so each of the builtin spec types can serve as the base for more complex data
definitions. For collection, mapping, and tuple type Specs, Specs will be recursively created for child elements if they
are types understood by s(). Specs can be composed using boolean logic with s.all() and s.any(). Many of
the builtin factories accept existing specs or values which can be coerced to specs. With Dataspec, you can easily start
speccing out your code and gradually add new specs and build off of existing specs as your app evolves.

17

dataspec

3.1.2 Predicates

Predicates are functions of one argument which return a boolean. Predicates answer questions such as “is x an instance
of str?” or “is n greater than 0?”. Frequently in Python, predicates are simply expressions used in an if statement.
In functional programming languages (and particularly in Lisps), it is more common to encode these predicates in
functions which can be combined using lambdas or partials to be reused. Spec encourages that functional paradigm
and benefits directly from it.

Predicate functions should satisfy the dataspec.PredicateFn type and will be wrapped in the
PredicateSpec spec type.

3.1.3 Validators

Validators are like predicates in that they answer the same fundamental questions about data that predicates do. How-
ever, Validators are a Spec concept that allow us to retrieve richer error data from Spec failures than we can natively
with a simple predicate. Validators are functions of one argument which return 0 or more ErrorDetails instances
(typically yield -ed as a generator) describing the error.

Validator functions should satisfy the dataspec.ValidatorFn type and will be wrapped in the
ValidatorSpec spec type.

3.1.4 Conformers

Conformers are functions of one argument, x, that return either a conformed value, which may be x itself, a new
value based on x, or an object of type Invalid if the value cannot be conformed. Builtin specs typically return the
constant INVALID, which allows for a quick identity check (via the is operator) in many cases.

All specs may include conformers. Scalar spec types such as PredicateSpec and ValidatorSpec simply
return their argument if it satisfies the spec. Specs for more complex data structures supply a default conformer which
produce new data structures after applying any child conformation functions to the data structure elements.

3.1.5 Tags

Tags are simple string names for specs. Tags most often appear in ErrorDetails objects when an input value
cannot be validated indicating the spec or specs which failed. This is useful for both debugging and producing useful
user-facing validation messages. All Specs can be created with custom tags, which are specified as a string in the first
positional argument of any spec creation function. Callers are not required to provide tags, but tags are required on
Spec instances so dataspec provides a default value for all builtin spec types.

3.2 Patterns

3.2.1 Factories

Often when validating documents such as a CSV or a JSON blob, you’ll find yourself writing a series of similar
specs again and again. In situations like these, it is recommended to create a factory function for generating specs
consistently. dataspec uses this pattern for many of the common spec types described above. This encourages
reuse of commonly used specs and should help enforce consistency across your domain.

Note: If nothing changes between definitions, then consider defining your Spec at the module level instead. Spec
instances are immutable and stateless, so they only need to be defined once.

18 Chapter 3. Concepts and Patterns

dataspec

3.2.2 Reuse

Specs are designed to be immutable and stateless, so they may be reused across many different contexts. Often, the
only thing that changes between uses is the tag or conformer. Specs provide a convenient API for generating copies of
themselves with new tags and conformers. You can even generate new specs with a composition of the existing spec’s
conformer. The API for creating new copies of specs always returns new copies, leaving the existing spec unmodified,
so you can safely create copies of specs with slight tweaks without fear of unexpected modification.

In an application setting, it may make sense to collocate your common specs in a single sub-module or sub-package so
they can be easily referred to from other parts of the application. We typically do not recommend CONSTANT_CASE
for module-level specs, since there tend to be quite a few of them and the all-caps names are more challenging to skim.

3.2. Patterns 19

dataspec

20 Chapter 3. Concepts and Patterns

CHAPTER 4

Dataspec API

Contents

• Dataspec API

– Creating Specs

– Types

– Spec Errors

– Utilities

4.1 Creating Specs

dataspec.s(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str, Option-
alKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate], FrozenSet[Any],
Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], Iterable[ErrorDetails]], Spec],
*preds, conformer: Optional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None) →
dataspec.base.Spec

dataspec.s is a singleton of dataspec.SpecAPI which can be imported and used directly as a generic
dataspec.Spec constructor.

For more information, see dataspec.SpecAPI.__call__().

class dataspec.SpecAPI

__call__(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], It-
erable[ErrorDetails]], Spec], *preds, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

21

dataspec

Create a new Spec instance from a dataspec.base.SpecPredicate.

Specs may be created from a variety of functions. Functions which take a single argument and return a
boolean value can produce simple Specs. For more detailed error messages, callers can provide a function
which takes a single argument and yields consecutive ErrorDetails (in particular, the return annotation
should be exactly Iterator[ErrorDetails]).

Specs may be created from Python types, in which case a Spec will be produced that performs an
isinstance() check. None may be provided as a shortcut for type(None). To specify a nilable
value, you should use dataspec.SpecAPI.nilable() instead.

Specs may be created for enumerated types using a Python set or frozenset or using Python enum.
Enum types. Specs created for enumerated types based on enum.Enum values validate the Enum name,
value, or Enum singleton and conform the input value to the corresponding enum.Enum value.

Specs may be created for homogeneous collections using a Python list type. Callers can specify a
few additional parameters for collection specs by providing an optional dictionary of values in the second
position of the input list. To validate the input collection type, provide the "kind" key with a collection
type. To specify the output type used by the default conformer, provide the "into" keyword with a
collection type.

Specs may be created for mapping types using a Python dict type. The input dict maps key values
(most often strings) to Specs (or values which can be coerced to Specs by this function). Mapping Specs
validate that an input map contains the required keys and that the value associated with the key matches the
given Spec. Mapping specs can be specified with optional keys by wrapping the optional key with s.opt.
If that key is present in the input value, it will be validated against the given Spec. However, if the input
value does not contain the optional key, the map is still considered valid. Mapping Specs do not assert that
input values contain only the keys given in the Spec – this is by design.

Specs may be created for heterogeneous collections using a Python tuple type. Tuple Specs will con-
form into collections.NamedTuple s, with each element in the input tuple being validated and
conformed to the corresponding element in the Spec.

Specs may be be created from existing Specs. If an existing datspec.Spec instance is given, that Spec
will be returned without modification. If a tag is given, a new Spec will be created from the existing Spec
with the new tag. If a conformer is given, a new Spec will be created from the existing Spec with the new
conformer (replacing any conformer on the existing Spec, rather than composing). If both a new tag and
conformer are given, a new Spec will be returned with both the new tag and conformer.

Parameters

• tag_or_pred – an optional tag for the resulting spec or a Spec or value which can be
converted into a Spec; if no tag is provided, the default depends on the input type:

– for frozenset and set predicates, the default is "set"

– for Enum predicates, the default is the name of the enum

– for tuple predicates, the default is "tuple"

– for list (collection) predicates, the default is "coll"

– for dict (mapping) predicates, the default is "map"

– for type predicates, the default is the name of the type

– for callable predicates, the default is the name of the function

• preds – if a tag is given, exactly one spec predicate; if no tag is given, this should not be
specified

• conformer – an optional dataspec.Conformer for the value

22 Chapter 4. Dataspec API

dataspec

Returns a dataspec.base.Spec instance

static all(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], It-
erable[ErrorDetails]], Spec], *preds, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec which validates input values against all of the input Specs or spec predicates.

For each Spec for which the input value is successfully validated, the value is successively passed to the
Spec’s dataspec.Spec.conform_valid() method.

The returned Spec’s dataspec.Spec.validate() method will emit a stream of dataspec.
ErrorDetails` from the first failing constituent Spec. dataspec.ErrorDetails emitted
from Specs after a failing Spec will not be emitted, because the failing Spec’s dataspec.Spec.
conform`() would not successfully conform the value.

The returned Spec’s dataspec.Spec.conform()method is the composition of all of the input Spec’s
conform methods.

If no Specs or Spec predicates are given, a ValueErrorwill be raised. If only one Spec or Spec predicate
is provided, it will be passed to dataspec.s() with the given tag and conformer and the value
returned without merging.

This method is not suitable for producing a union of mapping Specs. To merge mapping Specs, use
dataspec.SpecAPI.merge() instead.

Parameters

• tag_or_pred – an optional tag for the resulting spec or the first Spec or value which
can be converted into a Spec; if no tag is provided, the default is "all"

• preds – zero or more Specs or values which can be converted into a Spec

• conformer – an optional conformer which will be applied to the final conformed value
produced by the input Specs conformers

Returns a Spec

static any(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], Iter-
able[ErrorDetails]], Spec], *preds, tag_conformed: bool = False, conformer: Op-
tional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec which validates input values against any one of an arbitrary number of input Specs.

The returned Spec validates input values against the input Specs in the order they are passed into this
function.

If the returned Spec fails to validate the input value, the dataspec.Spec.validate() method will
emit a stream of dataspec.ErrorDetails from all of failing constituent Specs. If any of the con-
stituent Specs successfully validates the input value, then no dataspec.ErrorDetails will be emit-
ted by the dataspec.Spec.validate() method.

The conformer for the returned Spec will select the conformer for the first constituent Spec which success-
fully validates the input value. If a conformer is specified for this Spec, that conformer will be applied
after the successful Spec’s conformer. If tag_conformed is specified, the final conformed value from
both conformers will be wrapped in a tuple, where the first element is the tag of the successful Spec and the
second element is the final conformed value. If tag_conformed is not specified (which is the default),
the conformer will emit the conformed value directly.

4.1. Creating Specs 23

dataspec

If no Specs or Spec predicates are given, a ValueErrorwill be raised. If only one Spec or Spec predicate
is provided, it will be passed to dataspec.s() with the given tag and conformer and the value
returned without merging.

Parameters

• tag_or_pred – an optional tag for the resulting spec or the first Spec or value which
can be converted into a Spec; if no tag is provided, the default is "any"

• preds – zero or more Specs or values which can be converted into a Spec

• tag_conformed – if True, the conformed value will be wrapped in a 2-tuple where
the first element is the successful spec and the second element is the conformed value; if
False, return only the conformed value

• conformer – an optional conformer for the value

Returns a Spec

static blankable(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Map-
ping[Union[str, OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate,
...], List[SpecPredicate], FrozenSet[Any], Set[Any], Type[Any], Callable[[Any],
bool], Callable[[Any], Iterable[ErrorDetails]], Spec], *preds, conformer:
Optional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None)

Return a Spec which will validate values either by the input Spec or allow the empty string.

The returned Spec is roughly equivalent to s.any(spec, {""}).

If no Specs or Spec predicates is given, a ValueError will be raised.

Parameters

• tag_or_pred – an optional tag for the resulting Spec or a Spec or value which can be
converted into a Spec; if no tag is provided, the default is "blankable"

• preds – if a tag is provided for tag_or_pred, exactly Spec predicate as described in
tag_or_pred; otherwise, nothing

• conformer – an optional conformer for the value

Returns a Spec which validates either according to pred or the empty string

static bool(tag: str = ’bool’, allowed_values: Optional[Set[bool]] = None, conformer: Op-
tional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec which will validate boolean values.

Parameters

• tag – an optional tag for the resulting spec; default is "bool"

• allowed_values – if specified, a set of allowed boolean values

• conformer – an optional conformer for the value

Returns a Spec which validates boolean values

static bytes(tag: str = ’bytes’, type_: Tuple[Union[Type[bytes], Type[bytearray]], ...] =
(<class ’bytes’>, <class ’bytearray’>), length: Optional[int] = None, min-
length: Optional[int] = None, maxlength: Optional[int] = None, regex:
Union[Pattern[AnyStr], bytes, None] = None, conformer: Optional[Callable[[T],
Union[V, dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a spec that can validate bytes and bytearrays against common rules.

If type_ is specified, the resulting Spec will only validate the byte type or types named by type_,
otherwise byte and bytearray will be used.

24 Chapter 4. Dataspec API

dataspec

If length is specified, the resulting Spec will validate that input bytes measure exactly length bytes by
by len(). If minlength is specified, the resulting Spec will validate that input bytes measure at least
minlength bytes by by len(). If maxlength is specified, the resulting Spec will validate that input
bytes measure not more than maxlength bytes by by len(). Only one of length, minlength,
or maxlength can be specified. If more than one is specified a ValueError will be raised. If any
length value is specified less than 0 a ValueError will be raised. If any length value is not an int a
TypeError will be raised.

If regex is specified and is a bytes, a Regex pattern will be created by re.compile(). If regex
is specified and is a typing.Pattern, the supplied pattern will be used. In both cases, the re.
fullmatch() will be used to validate input strings.

Parameters

• tag – an optional tag for the resulting spec; default is "bytes"

• type – a single type or tuple of type s which will be used to type check input values
by the resulting Spec

• length – if specified, the resulting Spec will validate that bytes are exactly length
bytes long by len()

• minlength – if specified, the resulting Spec will validate that bytes are not fewer than
minlength bytes long by len()

• maxlength – if specified, the resulting Spec will validate that bytes are not longer than
maxlength bytes long by len()

• regex – if specified, the resulting Spec will validate that strings match the regex pattern
using re.fullmatch()

• conformer – an optional conformer for the value

Returns a Spec which validates bytes and bytearrays

static date(tag: str = ’date’, format_: Optional[str] = None, before: Optional[datetime.date]
= None, after: Optional[datetime.date] = None, is_aware: Optional[bool] = None,
conformer: Optional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None) →
dataspec.base.Spec

Return a Spec which validates datetime.date types with common rules.

If format_ is specified, the resulting Spec will accept string values and attempt to coerce them to
datetime.date instances first before applying the other specified validations. If the datetime.
datetime object parsed from the format_ string contains a portion not available in datetime.date
, then the validator will emit an error at runtime.

If before is specified, the resulting Spec will validate that input values are before before by Python’s
< operator. If after is specified, the resulting Spec will validate that input values are after after by
Python’s > operator. If before and after are specified and after is before before, a ValueError
will be raised.

If is_aware is specified, a TypeError will be raised as datetime.date values cannot be aware or
naive.

Parameters

• tag – an optional tag for the resulting spec; default is "date"

• format – if specified, a time format string which will be fed to datetime.date.
strptime() to convert the input string to a datetime.date before applying the
other validations

• before – if specified, the input value must come before this date or time

4.1. Creating Specs 25

dataspec

• after – if specified, the input value must come after this date or time

• is_aware – if True , validate that input objects are timezone aware; if False , validate
that input objects are naive; if None, do not consider whether the input value is naive or
aware

• conformer – an optional conformer for the value; if the format_ parameter is sup-
plied, the conformer will be passed a datetime.date value, rather than a string

Returns a Spec which validates datetime.date types

static default(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any],
Iterable[ErrorDetails]], Spec], *preds, default: Any = None, conformer:
Optional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None) →
dataspec.base.Spec

Return a Spec which will validate every value, but which will conform values not meeting the Spec to a
default value.

The returned Spec is equivalent to the following Spec:

s.any(spec, s.every(conformer=lambda _: default))

This Spec will allow any value to pass, but will conform to the given default if the data does not satisfy
the input Spec.

If no Specs or Spec predicates is given, a ValueError will be raised.

Parameters

• tag_or_pred – an optional tag for the resulting Spec or a Spec or value which can be
converted into a Spec; if no tag is provided, the default is "default"

• preds – if a tag is provided for tag_or_pred, exactly Spec predicate as described in
tag_or_pred; otherwise, nothing

• default – the default value to apply if the Spec does not validate a value

• conformer – an optional conformer for the value

Returns a Spec which validates every value, but which conforms values to a default

static dict_tag(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Map-
ping[Union[str, OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate,
...], List[SpecPredicate], FrozenSet[Any], Set[Any], Type[Any], Callable[[Any],
bool], Callable[[Any], Iterable[ErrorDetails]], Spec], *preds, conformer:
Optional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None) →
dataspec.base.Spec

Return a mapping Spec for which the Tags for each of the dict values is set to the corresponding key.

This is a convenience factory for the common pattern of creating a mapping Spec with all of the key Specs’
Tags bearing the same name as the corresponding key. The value Specs are created as by dataspec.
s, so existing Specs will not be modified; instead new Specs will be created by dataspec.Spec.
with_tag().

For more precise tagging of mapping Spec values, use the default s constructor with a dict value.

Parameters

• tag_or_pred – an optional tag for the resulting spec or the first Spec or value which
can be converted into a Spec; if no tag is provided, default is "map"

26 Chapter 4. Dataspec API

dataspec

• preds – if a tag is given, exactly one mapping spec predicate; if no tag is given, this
should not be specified

• conformer – an optional conformer for the value

Returns a mapping Spec

static email(tag: str = ’email’, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None, **kwargs)→ dataspec.base.Spec

Return a spec that can validate strings containing email addresses.

Email string specs always verify that input values are strings and that they can be successfully parsed by
email.headerregistry.Address().

Other restrictions can be applied by passing any one of three different keyword arguments for any of the
fields of email.headerregistry.Address. For example, to specify restrictions on the username
field, you could use the following keywords:

• domain accepts any value (including None) and checks for an exact match of the keyword argument
value

• domain_in takes a set or frozenset and validates that the domain‘ field is an exact match with
one of the elements of the set

• domain_regex takes a str, creates a Regex pattern from that string, and validates that domain
is a match (by re.fullmatch()) with the given pattern

The value None can be used for comparison in all cases, though the value None is never tolerated as a
valid username or domain of an email address.

At most only one restriction can be applied to any given field for the email.headerregistry.
Address. Specifying more than one restriction for a field will produce a ValueError.

Providing a keyword argument for a non-existent field of email.headerregistry.Address will
produce a ValueError.

Parameters

• tag – an optional tag for the resulting spec; default is "email"

• username – if specified, require an exact match for username

• username_in – if specified, require username to match at least one value in the set

• username_regex – if specified, require username to match the regex pattern

• domain – if specified, require an exact match for domain

• domain_in – if specified, require domain to match at least one value in the set

• domain_regex – if specified, require domain to match the regex pattern

• conformer – an optional conformer for the value

Returns a Spec which can validate that a string contains an email address

static every(tag: str = ’every’, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec which validates every possible value.

Parameters

• tag – an optional tag for the resulting spec; default is "every"

• conformer – an optional conformer for the value

Returns a Spec which validates any value

4.1. Creating Specs 27

dataspec

static explain(spec: dataspec.base.Spec, v)→ Optional[dataspec.base.ValidationError]
Return a ValidationError instance containing all of the errors validating v, if there were any; return None
otherwise.

static fdef(argpreds: Tuple[Union[Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any],
Iterable[ErrorDetails]], Spec], ...] = (), kwargpreds: Optional[Mapping[str,
Union[Mapping[Hashable, SpecPredicate], Mapping[Union[str, OptionalKey[str]],
SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate], FrozenSet[Any],
Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], Iterable[ErrorDetails]],
Spec]]] = None, retpred: Union[Mapping[Hashable, SpecPredicate], Map-
ping[Union[str, OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...],
List[SpecPredicate], FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool],
Callable[[Any], Iterable[ErrorDetails]], Spec, None] = None)

Wrap a function f and validate its arguments, keyword arguments, and return value with Specs, if any are
given.

static inst(tag: str = ’datetime’, format_: Optional[str] = None, before: Op-
tional[datetime.datetime] = None, after: Optional[datetime.datetime] = None,
is_aware: Optional[bool] = None, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec which validates datetime.datetime types with common rules.

If format_ is specified, the resulting Spec will accept string values and attempt to coerce them to
datetime.datetime instances first before applying the other specified validations.

If before is specified, the resulting Spec will validate that input values are before before by Python’s
< operator. If after is specified, the resulting Spec will validate that input values are after after by
Python’s > operator. If before and after are specified and after is before before, a ValueError
will be raised.

If is_aware is True , the resulting Spec will validate that input values are timezone aware. If
is_aware is False , the resulting Spec will validate that inpute values are naive. If unspecified, the
resulting Spec will not consider whether the input value is naive or aware.

Parameters

• tag – an optional tag for the resulting spec; default is "datetime"

• format – if specified, a time format string which will be fed to datetime.
datetime.strptime() to convert the input string to a datetime.datetime be-
fore applying the other validations

• before – if specified, the input value must come before this date or time

• after – if specified, the input value must come after this date or time

• is_aware – if True , validate that input objects are timezone aware; if False , validate
that input objects are naive; if None, do not consider whether the input value is naive or
aware

• conformer – an optional conformer for the value; if the format_ parameter is sup-
plied, the conformer will be passed a datetime.datetime value, rather than a string

Returns a Spec which validates datetime.datetime types

static inst_str(tag: str = ’datetime_str’, iso_only: bool = False, before: Op-
tional[datetime.datetime] = None, after: Optional[datetime.datetime] = None,
is_aware: Optional[bool] = None, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

28 Chapter 4. Dataspec API

dataspec

Return a Spec that validates strings containing date/time strings in most common formats.

The resulting Spec will validate that the input value is a string which contains a date/time using
dateutil.parser.parse(). If the input value can be determined to contain a valid datetime.
datetime instance, it will be validated against a datetime Spec as by a standard dataspec datetime
Spec using the keyword options below.

dateutil.parser.parse() cannot produce datetime.time or datetime.date instances di-
rectly, so this method will only produce datetime.datetime() instances even if the input string
contains only a valid time or date, but not both.

If iso_only keyword argument is True, restrict the set of allowed input values to strings which contain
ISO 8601 formatted strings. This is accomplished using dateutil.parser.isoparse(), which
does not guarantee strict adherence to the ISO 8601 standard, but accepts a wider range of valid ISO 8601
strings than Python 3.7+’s datetime.datetime.fromisoformat() function.

Parameters

• tag – an optional tag for the resulting spec; default is "datetime_str"

• iso_only – if True, restrict the set of allowed date strings to those formatted as ISO
8601 datetime strings; default is False

• before – if specified, a datetime that specifies the latest instant this Spec will validate

• after – if specified, a datetime that specifies the earliest instant this Spec will validate

• is_aware (bool) – if specified, indicate whether the Spec will validate either aware or
naive datetime.datetime instances.

• conformer – an optional conformer for the value; if one is not provided dateutil.
parser.parse() will be used

Returns a Spec which validates strings containing date/time strings

static kv(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], Iter-
able[ErrorDetails]], Spec], *preds, conform_keys: bool = False, conformer: Op-
tional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec that validates mapping types against a single Spec for all keys and a single Spec for all
values.

If conform_keys is specified as True, the default conformer will conform keys and values. By default,
conform_keys is False to avoid duplicate names produced during the conformation.

The returned Spec’s dataspec.Spec.conform() method will return a dict with values conformed
by the corresponding input Spec. If a conformer is provided via keyword argument, that conformer will
be provided a dict with the conformed dict as described above. Otherwise, the default conformer will
simply return the conformed dict . Note that the default conformer does not modify the input mapping
in place.

Exactly two Specs must be provided or a ValueError will be raised during construction.

Parameters

• tag_or_pred – an optional tag for the resulting spec or the key Spec or value which
can be converted into a Spec

• preds – if a tag is given, preds should be exactly two Specs or values which can be
converted into Specs; the first shall be the Spec for the keys and the second shall be the
Spec for values

4.1. Creating Specs 29

dataspec

• conform_keys – if True, the default conformer will also conform keys according to
the input key Spec; default is False

• conformer – an optional conformer which will be composed with the default conformer

Returns a Spec

static merge(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], It-
erable[ErrorDetails]], Spec], *preds, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Merge two or more mapping Specs into a single new Spec.

The returned Spec validates input values against a mapping Spec which is created from the union of input
mapping Specs. Mapping Specs will be merged in the order they are provided. Individual key Specs whose
keys appear more than one input Spec will be merged as via dataspec.SpecAPI.all() in the order
they are passed into this function.

If no Specs or Spec predicates are given, a ValueErrorwill be raised. If only one Spec or Spec predicate
is provided, it will be passed to dataspec.s() with the given tag and conformer and the value
returned without merging. If any Specs or Spec predicates are provided which are not mapping Specs or
which cannot be coerced to mapping Specs, a TypeError will be raised.

The returned Spec’s dataspec.Spec.conform() method is a standard mapping Spec default con-
former. Keys not defined in the union of key sets will be dropped during conformation. Values with more
than one Spec defined in the input Specs will be conformed as by dataspec.SpecAPI.all() applied
to all of their input Specs in the order they were provided. Values with exactly one Spec will use that Spec
as given.

Parameters

• tag_or_pred – an optional tag for the resulting spec or the first Spec or value
which can be converted into a Spec; if no tag is provided, the default is computed as
"merge-of-spec1-and-spec2-..."

• preds – zero or more mapping Specs or values which can be converted into a mapping
Spec

• conformer – an optional conformer for the value

Returns a single mapping Spec which is the union of all input Specs

static nilable(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], It-
erable[ErrorDetails]], Spec], *preds, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec which will validate values either by the input Spec or allow the value None.

The returned Spec is roughly equivalent to s.any(spec, {None}).

If no Specs or Spec predicates is given, a ValueError will be raised.

Parameters

• tag_or_pred – an optional tag for the resulting Spec or a Spec or value which can be
converted into a Spec; if no tag is provided, the default is "nilable"

• preds – if a tag is provided for tag_or_pred, exactly one Spec predicate as described
in tag_or_pred; otherwise, nothing

• conformer – an optional conformer for the value

30 Chapter 4. Dataspec API

dataspec

Returns a Spec which validates either according to pred or the value None

static num(tag: str = ’num’, type_: Union[Type[CT_co], Tuple[Type[CT_co], ...]] = (<class
’float’>, <class ’int’>), min_: Union[complex, float, int, None] = None, max_:
Union[complex, float, int, None] = None, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec that can validate numeric values against common rules.

If type_ is specified, the resulting Spec will only validate the numeric type or types named by type_,
otherwise float and int will be used.

If min_ is specified, the resulting Spec will validate that input values are at least min_ using Python’s <
operator. If max_ is specified, the resulting Spec will validate that input values are not more than max_
using Python’s < operator. If min_ and max_ are specified and max_ is less than min_, a ValueError
will be raised.

Parameters

• tag – an optional tag for the resulting spec; default is "num"

• type – a single type or tuple of type s which will be used to type check input values
by the resulting Spec

• min – if specified, the resulting Spec will validate that numeric values are not less than
min_ (as by <)

• max – if specified, the resulting Spec will validate that numeric values are not less than
max_ (as by >)

• conformer – an optional conformer for the value

Returns a Spec which validates numeric values

static obj(tag_or_pred: Union[str, Mapping[Hashable, SpecPredicate], Mapping[Union[str,
OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...], List[SpecPredicate],
FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], It-
erable[ErrorDetails]], Spec], *preds, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec for an arbitrary object.

Object Specs are defined as a mapping Spec with only string keys. The resulting Spec will validate arbitrary
objects by calling getattr() on the input value with the mapping key names to validate the value
contained on that attribute.

Object Specs support optional keys via dataspec.SpecAPI.opt(). The value must be a string.

Object Specs do not perform any type checks. Type checks can be defined separately by calling
dataspec.s() with a type.

If no Specs or Spec predicates is given, a ValueError will be raised.

Parameters

• tag_or_pred – an optional tag for the resulting Spec or a mapping Spec predicate with
string keys (potentially wrapped by dataspec.SpecAPI.opt()) and Spec predicates
for values; if no tag is provided, the default is "object"

• preds – if a tag is provided for tag_or_pred, exactly one mapping Spec predicate as
described in tag_or_pred; otherwise, nothing

• conformer – an optional conformer for the value

Returns a Spec which validates generic objects by their attributes

4.1. Creating Specs 31

dataspec

static opt(k: T)→ dataspec.base.OptionalKey[~T][T]
Return k wrapped in a marker object indicating that the key is optional in associative specs.

static phone(tag: str = ’phonenumber_str’, region: Optional[str] = None, is_possible: bool
= True, is_valid: bool = True, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec that validates strings containing telephone number in most common formats.

The resulting Spec will validate that the input value is a string which contains a telephone number using
phonenumbers.parse(). If the input value can be determined to contain a valid telephone number,
it will be validated against a Spec which validates properties specified by the keyword arguments of this
function.

If region is supplied, the region will be used as a hint for phonenumbers.parse() and the region
of the parsed telephone number will be verified. Telephone numbers can be specified with their region as a
“+” prefix, which takes precedence over the region hint. The Spec will reject parsed telephone numbers
whose region differs from the specified region in all cases.

If is_possible is True, the parsed telephone number will be validated as a possible telephone number
for the parsed region (which may be different from the specified region).

If is_valid is True, the parsed telephone number will be validated as a valid telephone number (as by
phonenumbers.is_valid_number()).

By default, the Spec supplies a conformer which conforms telephone numbers to the international E.164
format, which is globally unique.

Parameters

• tag – an optional tag for the resulting spec; default is "phonenumber_str"

• region – an optional two-letter country code which, if provided, will be checked against
the parsed telephone number’s region

• is_possible – if True and the input number can be successfully parsed, validate that
the number is a possible number (it has the right number of digits)

• is_valid – if True and the input number can be successfully parsed, validate that the
number is a valid number (it is an an assigned exchange)

• conformer – an optional conformer for the value; the conformer will be passed a
phonenumbers.PhoneNumber object, rather than a string

Returns a Spec which validates strings containing telephone numbers

static str(tag: str = ’str’, length: Optional[int] = None, minlength: Optional[int] = None,
maxlength: Optional[int] = None, regex: Union[Pattern[AnyStr], str, None] = None,
format_: Optional[str] = None, conform_format: Optional[str] = None, conformer: Op-
tional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec that can validate strings against common rules.

String Specs always validate that the input value is a str type.

If length is specified, the resulting Spec will validate that input strings measure exactly length charac-
ters by by len(). If minlength is specified, the resulting Spec will validate that input strings measure
at least minlength characters by by len(). If maxlength is specified, the resulting Spec will validate
that input strings measure not more than maxlength characters by by len(). Only one of length,
minlength, or maxlength can be specified. If more than one is specified a ValueError will be
raised. If any length value is specified less than 0 a ValueError will be raised. If any length value is
not an int a TypeError will be raised.

If regex is specified and is a str, a Regex pattern will be created by re.compile(). If regex
is specified and is a typing.Pattern, the supplied pattern will be used. In both cases, the re.

32 Chapter 4. Dataspec API

dataspec

fullmatch() will be used to validate input strings. If format_ is specified, the input string will
be validated using the Spec registered to validate for the string name of the format. If conform_format
is specified, the input string will be validated using the Spec registered to validate for the string name of the
format and the default conformer registered with the format Spec will be set as the conformer for the
resulting Spec. Only one of regex, format_, and conform_format may be specified when creating
a string Spec; if more than one is specified, a ValueError will be raised.

String format Specs may be registered using the function dataspec.
register_str_format_spec`(). Alternatively, a string format validator function may be
registered using the decorator dataspec.register_str_format`(). String formats may include
a default conformer which will be applied for conform_format usages of the format.

Several useful defaults are supplied as part of this library:

• iso-date validates that a string contains a valid ISO 8601 date string

• iso-datetime (Python 3.7+) validates that a string contains a valid ISO 8601 date and time stamp

• iso-time (Python 3.7+) validates that a string contains a valid ISO 8601 time string

• uuid validates that a string contains a valid UUID

Parameters

• tag – an optional tag for the resulting spec; default is "str"

• length – if specified, the resulting Spec will validate that strings are exactly length
characters long by len()

• minlength – if specified, the resulting Spec will validate that strings are not fewer than
minlength characters long by len()

• maxlength – if specified, the resulting Spec will validate that strings are not longer than
maxlength characters long by len()

• regex – if specified, the resulting Spec will validate that strings match the regex pattern
using re.fullmatch()

• format – if specified, the resulting Spec will validate that strings match the registered
string format format

• conform_format – if specified, the resulting Spec will validate that strings match the
registered string format conform_format; the resulting Spec will automatically use
the default conformer supplied with the string format

• conformer – an optional conformer for the value

Returns a Spec which validates strings

static time(tag: str = ’time’, format_: Optional[str] = None, before: Optional[datetime.time]
= None, after: Optional[datetime.time] = None, is_aware: Optional[bool] = None,
conformer: Optional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None) →
dataspec.base.Spec

Return a Spec which validates datetime.time types with common rules.

If format_ is specified, the resulting Spec will accept string values and attempt to coerce them to
datetime.time instances first before applying the other specified validations. If the datetime.
datetime object parsed from the format_ string contains a portion not available in datetime.time
, then the validator will emit an error at runtime.

If before is specified, the resulting Spec will validate that input values are before before by Python’s
< operator. If after is specified, the resulting Spec will validate that input values are after after by

4.1. Creating Specs 33

dataspec

Python’s > operator. If before and after are specified and after is before before, a ValueError
will be raised.

If is_aware is True , the resulting Spec will validate that input values are timezone aware. If
is_aware is False , the resulting Spec will validate that inpute values are naive. If unspecified, the
resulting Spec will not consider whether the input value is naive or aware.

Parameters

• tag – an optional tag for the resulting spec; default is "time"

• format – if specified, a time format string which will be fed to datetime.time.
strptime() to convert the input string to a datetime.time before applying the
other validations

• before – if specified, the input value must come before this date or time

• after – if specified, the input value must come after this date or time

• is_aware – if True , validate that input objects are timezone aware; if False , validate
that input objects are naive; if None, do not consider whether the input value is naive or
aware

• conformer – an optional conformer for the value; if the format_ parameter is sup-
plied, the conformer will be passed a datetime.time value, rather than a string

Returns a Spec which validates datetime.time types

static url(tag: str = ’url_str’, query: Union[Mapping[Hashable, SpecPredicate], Map-
ping[Union[str, OptionalKey[str]], SpecPredicate], Tuple[SpecPredicate, ...],
List[SpecPredicate], FrozenSet[Any], Set[Any], Type[Any], Callable[[Any], bool],
Callable[[Any], Iterable[ErrorDetails]], Spec, None] = None, conformer: Op-
tional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None, **kwargs) →
dataspec.base.Spec

Return a spec that can validate URLs against common rules.

URL string specs always verify that input values are strings and that they can be successfully parsed by
urllib.parse.urlparse().

URL specs can specify a new or existing Spec or spec predicate value to validate the query string value pro-
duced by calling urllib.parse.parse_qs() on the urllib.parse.ParseResult.query
attribute of the parsed URL result.

Other restrictions can be applied by passing any one of three different keyword arguments for any of the
fields (excluding urllib.parse.ParseResult.query) of urllib.parse.ParseResult.
For example, to specify restrictions on the hostname field, you could use the following keywords:

• hostname accepts any value (including None) and checks for an exact match of the keyword argu-
ment value

• hostname_in takes a :py:class:set or :py:class:frozenset and validates that the hostname‘
field is an exact match with one of the elements of the set

• hostname_regex takes a :py:class:str, creates a Regex pattern from that string, and validates
that hostname is a match (by re.fullmatch()) with the given pattern

The value None can be used for comparison in all cases. Note that default the values for fields of urllib.
parse.ParseResult vary by field, so using None may produce unexpected results.

At most only one restriction can be applied to any given field for the urllib.parse.ParseResult.
Specifying more than one restriction for a field will produce a ValueError.

At least one restriction must be specified to create a URL string Spec. Attempting to create a URL Spec
without specifying a restriction will produce a ValueError.

34 Chapter 4. Dataspec API

dataspec

Providing a keyword argument for a non-existent field of urllib.parse.ParseResult will produce
a ValueError.

Parameters

• tag – an optional tag for the resulting spec; default is "url_str"

• query – an optional spec for the dict created by calling urllib.parse.
parse_qs() on the urllib.parse.ParseResult.query attribute of the parsed
URL

• scheme – if specified, require an exact match for scheme

• scheme_in – if specified, require scheme to match at least one value in the set

• schema_regex – if specified, require scheme to match the regex pattern

• netloc – if specified, require an exact match for netloc

• netloc_in – if specified, require netloc to match at least one value in the set

• netloc_regex – if specified, require netloc to match the regex pattern

• path – if specified, require an exact match for path

• path_in – if specified, require path to match at least one value in the set

• path_regex – if specified, require path to match the regex pattern

• params – if specified, require an exact match for params

• params_in – if specified, require params to match at least one value in the set

• params_regex – if specified, require params to match the regex pattern

• fragment – if specified, require an exact match for fragment

• fragment_in – if specified, require fragment to match at least one value in the set

• fragment_regex – if specified, require fragment to match the regex pattern

• username – if specified, require an exact match for username

• username_in – if specified, require username to match at least one value in the set

• username_regex – if specified, require username to match the regex pattern

• password – if specified, require an exact match for password

• password_in – if specified, require password to match at least one value in the set

• password_regex – if specified, require password to match the regex pattern

• hostname – if specified, require an exact match for hostname

• hostname_in – if specified, require hostname to match at least one value in the set

• hostname_regex – if specified, require hostname to match the regex pattern

• port – if specified, require an exact match for port

• port_in – if specified, require port to match at least one value in the set

• conformer – an optional conformer for the value

Returns a Spec which can validate that a string contains a URL

4.1. Creating Specs 35

dataspec

static uuid(tag: str = ’uuid’, versions: Optional[Set[int]] = None, conformer: Op-
tional[Callable[[T], Union[V, dataspec.base.Invalid]]] = None)→ dataspec.base.Spec

Return a Spec that can validate UUIDs against common rules.

UUID Specs always validate that the input value is a uuid.UUID type.

If versions is specified, the resulting Spec will validate that input UUIDs are the RFC 4122 variant and
that they are one of the specified integer versions of RFC 4122 variant UUIDs. If versions specifies an
invalid RFC 4122 variant UUID version, a ValueError will be raised.

Parameters

• tag – an optional tag for the resulting spec; default is "uuid"

• versions – an optional set of integers of 1, 3, 4, and 5 which the input uuid.UUID
must match; otherwise, any version will pass the Spec

• conformer – an optional conformer for the value

Returns a Spec which validates UUIDs

4.2 Types

class dataspec.Spec
The abstract base class of all Specs.

All Specs returned by dataspec.s conform to this interface.

compose_conformer(conformer: Callable[[T], Union[V, dataspec.base.Invalid]]) →
dataspec.base.Spec

Return a new Spec instance with a new conformer which is the composition of the conformer and the
current conformer for this Spec instance.

If the current Spec instance has a custom conformer, this is equivalent to calling spec.
with_conformer(lambda v: conformer(spec.conformer(v))). If the current Spec in-
stance has no custom conformer, this is equivalent to calling dataspec.Spec.with_conformer()
with conformer.

To completely replace the conformer for this Spec instance, use dataspec.Spec.
with_conformer().

This method does not modify the current Spec instance.

Parameters conformer – a conformer to compose with the conformer of the current Spec
instance

Returns a copy of the current Spec instance with the new composed conformer

conform(v: Any)
Conform v to the Spec, returning the possibly conformed value or an instance of dataspec.Invalid
if the value is invalid cannot be conformed.

Exceptions arising from calling dataspec.Spec.conformer with v will be raised from this method.

Parameters v – a value to conform

Returns a conformed value or a dataspec.Invalid instance if the input value could not be
conformed

conform_valid(v: Any)
Conform v to the Spec without checking if v is valid first and return the possibly conformed value or
INVALID if the value cannot be conformed.

36 Chapter 4. Dataspec API

dataspec

This function should be used only if v has already been check for validity.

Exceptions arising from calling dataspec.Spec.conformer with v will be raised from this method.

Parameters v – a validated value to conform

Returns a conformed value or a dataspec.Invalid instance if the input value could not be
conformed

conformer
Return the custom conformer attached to this Spec, if one is defined.

is_valid(v: Any)→ bool
Returns True if v is valid according to the Spec, otherwise returns False.

Parameters v – a value to validate

Returns True if the value is valid according to the Spec, otherwise False

tag
Return the tag used to identify this Spec.

Tags are useful for debugging and in validation messages.

validate(v: Any)→ Iterator[dataspec.base.ErrorDetails]
Validate the value v against the Spec, yielding successive Spec failures as dataspec.ErrorDetails
instances, if any.

By definition, if next(spec.validate(v)) raises StopIteration, the first time it is called, the
value is considered valid according to the Spec.

Parameters v – a value to validate

Returns an iterator of Spec failures as dataspec.ErrorDetails instances, if any

validate_all(v: Any)→ List[dataspec.base.ErrorDetails]
Validate the value v against the Spec, returning a list of all Spec failures of v as dataspec.
ErrorDetails instances.

This method is equivalent to list(spec.validate(v)). If an empty list is returned v is valid
according to the Spec.

Parameters v – a value to validate

Returns a list of Spec failures as dataspec.ErrorDetails instances, if any

validate_ex(v: Any)→ None
Validate the value v against the Spec, throwing a dataspec.ValidationError containing a list of
all of the Spec failures for v , if any. Returns None otherwise.

Parameters v – a value to validate

Returns None

with_conformer(conformer: Optional[Callable[[T], Union[V, dataspec.base.Invalid]]]) →
dataspec.base.Spec

Return a new Spec instance with the new conformer, replacing any custom conformers.

If conformer is None , the returned Spec will have no custom conformer.

To return a copy of the current Spec with a composition of the current Spec instance, use dataspec.
Spec.compose_conformer().

Parameters conformer – a conformer to replace the conformer of the current Spec instance
or None to remove the conformer associated with this

Returns a copy of the current Spec instance with new conformer

4.2. Types 37

dataspec

with_tag(tag: str)→ dataspec.base.Spec
Return a new Spec instance with the new tag applied.

This method does not modify the current Spec instance.

Parameters tag – a new tag to use for the new Spec

Returns a copy of the current Spec instance with the new tag applied

dataspec.SpecPredicate
SpecPredicates are values that can be coerced into Specs by dataspec.s().

dataspec.Tag
Tags are string names given to dataspec.Spec instances which are emitted in dataspec.
ErrorDetails instances to indicate which Spec or Specs were evaluated to produce the error.

dataspec.Conformer
Conformers are functions of one argument which return either a conformed value or an instance of dataspec.
Invalid (such as dataspec.INVALID).

dataspec.PredicateFn
Predicate functions are functions of one argument which return bool indicating whether or not the argument is
valid or not.

dataspec.ValidatorFn
Validator functions are functions of one argument which yield successive dataspec.ErrorDetails in-
stances indicating exactly why input values do not meet the Spec.

4.3 Spec Errors

class dataspec.ErrorDetails(message: str, pred: Union[Mapping[Hashable, SpecPredicate],
Mapping[Union[str, OptionalKey[str]], SpecPredicate], Tu-
ple[SpecPredicate, ...], List[SpecPredicate], FrozenSet[Any],
Set[Any], Type[Any], Callable[[Any], bool], Callable[[Any], Iter-
able[ErrorDetails]], Spec], value: Any, via: List[str] = NOTHING,
path: List[Any] = NOTHING)

ErrorDetails instances encode details about values which fail Spec validation.

The message of an ErrorDetails object gives a human-readable description of why the value failed to
validate. The message is intended for logs and debugging purposes by application developers. The message
is not intended for non-technical users and dataspec makes no guarantees that builtin error messages could be
read and understood by such users.

ErrorDetails instances may be emitted for values failing “child” Specs from within mapping, collection, or
tuple Specs or they may be emitted from simple predicate failures. The path attribute indicates directly which
nested element triggered the Spec failure.

via indicates the list of all Specs that were evaluated up to and include the current failure for this particular
branch of logic. Tags for sibling Specs to the current Spec will not be included in via. Because multiple Specs
may be evaluated against the same value, it is likely that the number of Tags in via will not match the number
elements in the path.

Parameters

• message – a string message intended for developers to indicate why the input value failed
to validate

• pred – the input Spec predicate that caused the failure

• value – the value that failed to validate

38 Chapter 4. Dataspec API

dataspec

• via – a list of dataspec.Tag s for dataspec.Spec s that were evaluated up to and
including the one that caused this failure

• path – a list of indexes or keys that indicate the path to the current value from the primary
value being validated; this is most useful for nested data structures such as Mapping types
and collections

as_map()→ Mapping[str, Union[str, List[str]]]
Return a map of the fields of this instance converted to strings or a list of strings, suitable for being
converted into JSON.

The dataspec.ErrorDetails.pred attribute will be stringified in one of three ways. If pred is
a dataspec.Spec instance, pred will be converted to the dataspec.Spec.tag of that instance.
If pred is a callable (as by callable()) , it will be converted to the __name__ of the callable.
Otherwise, pred will be passed directly to str().

message will remain a string. value will be passed to str() directly. via and path will be returned
as a list of strings.

Returns a mapping of string keys to strings or lists of strings

with_details(tag: str, loc: Any = <object object>)→ dataspec.base.ErrorDetails
Add the given tag to the via list and add a key path if one is specified by the caller.

This method mutates the via and path list attributes directly rather than returning a new
ErrorDetails instance.

class dataspec.Invalid
Objects of type Invalid should be emitted from dataspec.Conformer s if they are not able to conform
a value or if it is not valid.

Builtin Conformers emit the constant value dataspec.INVALID if they cannot conform their input value.
This allows for a fast identity check using Python’s is operator, though for type checking Invalid will
required.

class dataspec.ValidationError(errors: Sequence[dataspec.base.ErrorDetails])
ValidationErrors are thrown by dataspec.Spec.validate_ex() and contain a sequence of all
dataspec.ErrorDetails instances generated by the Spec for the input value.

Parameters errors – a sequence of all dataspec.ErrorDetails instancess generated by
the Spec for the input value

dataspec.INVALID
INVALID is a singleton instance of dataspec.Invalid emitted by builtin conformers which can be used
for a quick is identity check.

4.4 Utilities

dataspec.pred_to_validator(message: str, complement: bool = False, convert_value:
Callable[[Any], Any] = <function _identity>, **fmtkwargs)
→ Callable[[Callable[[Any], bool]], Callable[[Any], Iter-
able[dataspec.base.ErrorDetails]]]

Decorator which converts a simple predicate function to a validator function.

If the wrapped predicate returns a truthy value, the wrapper function will emit a single dataspec.base.
ErrorDetails object with the message format string interpolated with the failing value as value (possibly
subject to conversion by the optional keyword argument convert_value) and any other key/value pairs from
fmtkwargs.

4.4. Utilities 39

dataspec

If complement keyword argument is True, the return value of the decorated predicate will be converted as
by Python’s not operator and the return value will be used to determine whether or not an error has occurred.
This is a convenient way to negate a predicate function without having to modify the function itself.

Parameters

• message – a format string which will be the base error message in the resulting
dataspec.base.ErrorDetails object

• complement – if :py:obj:True, the boolean complement of the decorated function’s re-
turn value will indicate failure

• convert_value – an optional function which can convert the value before interpolating
it into the error message

• fmtkwargs – optional key/value pairs which will be interpolated into the error message

Returns a validator function which can be fed into a dataspec.base.ValidatorSpec

dataspec.register_str_format(tag: str, conformer: Optional[Callable[[T], Union[V,
dataspec.base.Invalid]]] = None) → Callable[[Callable[[Any],
Iterable[dataspec.base.ErrorDetails]]], Callable[[Any], Iter-
able[dataspec.base.ErrorDetails]]]

Register a new String format, which will be checked by the validator function validate. A conformer can be
supplied for the string format which will be applied if desired, but may otherwise be ignored.

dataspec.tag_maybe(maybe_tag: Union[str, T], *args)→ Tuple[Optional[str], Tuple[T, ...]]
Return the Spec tag and the remaining arguments if a tag is given, else return the arguments.

40 Chapter 4. Dataspec API

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

41

dataspec

42 Chapter 5. Indices and tables

Python Module Index

d
dataspec, 39

43

dataspec

44 Python Module Index

Index

Symbols
__call__() (dataspec.SpecAPI method), 21

A
all() (dataspec.SpecAPI static method), 23
any() (dataspec.SpecAPI static method), 23
as_map() (dataspec.ErrorDetails method), 39

B
blankable() (dataspec.SpecAPI static method), 24
bool() (dataspec.SpecAPI static method), 24
bytes() (dataspec.SpecAPI static method), 24

C
compose_conformer() (dataspec.Spec method), 36
conform() (dataspec.Spec method), 36
conform_valid() (dataspec.Spec method), 36
conformer (dataspec.Spec attribute), 37
Conformer (in module dataspec), 38

D
dataspec (module), 39
dataspec.INVALID (in module dataspec), 39
date() (dataspec.SpecAPI static method), 25
default() (dataspec.SpecAPI static method), 26
dict_tag() (dataspec.SpecAPI static method), 26

E
email() (dataspec.SpecAPI static method), 27
ErrorDetails (class in dataspec), 38
every() (dataspec.SpecAPI static method), 27
explain() (dataspec.SpecAPI static method), 27

F
fdef() (dataspec.SpecAPI static method), 28

I
inst() (dataspec.SpecAPI static method), 28

inst_str() (dataspec.SpecAPI static method), 28
Invalid (class in dataspec), 39
is_valid() (dataspec.Spec method), 37

K
kv() (dataspec.SpecAPI static method), 29

M
merge() (dataspec.SpecAPI static method), 30

N
nilable() (dataspec.SpecAPI static method), 30
num() (dataspec.SpecAPI static method), 31

O
obj() (dataspec.SpecAPI static method), 31
opt() (dataspec.SpecAPI static method), 31

P
phone() (dataspec.SpecAPI static method), 32
pred_to_validator() (in module dataspec), 39
PredicateFn (in module dataspec), 38

R
register_str_format() (in module dataspec), 40

S
s() (in module dataspec), 21
Spec (class in dataspec), 36
SpecAPI (class in dataspec), 21
SpecPredicate (in module dataspec), 38
str() (dataspec.SpecAPI static method), 32

T
tag (dataspec.Spec attribute), 37
Tag (in module dataspec), 38
tag_maybe() (in module dataspec), 40
time() (dataspec.SpecAPI static method), 33

45

dataspec

U
url() (dataspec.SpecAPI static method), 34
uuid() (dataspec.SpecAPI static method), 35

V
validate() (dataspec.Spec method), 37
validate_all() (dataspec.Spec method), 37
validate_ex() (dataspec.Spec method), 37
ValidationError (class in dataspec), 39
ValidatorFn (in module dataspec), 38

W
with_conformer() (dataspec.Spec method), 37
with_details() (dataspec.ErrorDetails method), 39
with_tag() (dataspec.Spec method), 38

46 Index

	Getting Started
	What are Specs?
	Features
	Installation
	First Steps
	Why not X?

	Usage
	Constructing Specs
	Validation
	Conformation
	Predicate and Validators
	Type Specs
	Factories
	Enumeration (Set) Specs
	Collection Specs
	Mapping Specs
	Tuple Specs
	Combination Specs
	Utility Specs

	Concepts and Patterns
	Concepts
	Patterns

	Dataspec API
	Creating Specs
	Types
	Spec Errors
	Utilities

	Indices and tables
	Python Module Index
	Index

